Search results for " fuzzy c-means"
showing 10 items of 12 documents
Spatiotemporal hotspots analysis for exploring the evolution of diseases: An application to oto-laryngopharyngeal diseases
2013
Abstract View references (14) This paper presents a spatiotemporal analysis of hotspot areas based on the Extended Fuzzy C-Means method implemented in a geographic information system. This method has been adapted for detecting spatial areas with high concentrations of events and tested to study their temporal evolution. The data consist of georeferenced patterns corresponding to the residence of patients in the district of Naples (Italy) to whom a surgical intervention to the oto-laryngopharyngeal apparatus was carried out between the years 2008 and 2012
A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning
2017
The aim of this study is to combine Biological Target Volume (BTV) segmentation and Gross Target Volume (GTV) segmentation in stereotactic neurosurgery.Our goal is to enhance Clinical Target Volume (CTV) definition, including metabolic and morphologic information, for treatment planning and patient follow-up.We propose a fully automatic approach for multimodal PET and MR image segmentation. This method is based on the Random Walker (RW) and Fuzzy C-Means clustering (FCM) algorithms. A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is presented, considering volume…
Stable Automatic Unsupervised Segmentation of Retinal Vessels Using Self-Organizing Maps and a Modified Fuzzy C-Means Clustering
2011
In this paper an automatic unsupervised method for the segmentation of retinal vessels is proposed. Three features are extracted from the tested image. The features are scaled down by a factor of 2 and mapped into a Self-Organizing Map. A modified Fuzzy C-Means clustering algorithm is used to divide the neuron units of the map in 2 classes. The entire image is again input for the Self-Organizing Map and the class of each pixel will be the class of its best matching unit in the Self-Organizing Map. Finally, the vessel network is post-processed using a hill climbing strategy on the connected components of the segmented image. The experimental evaluation on the DRIVE database shows accurate ex…
Fuzzy C-Means Segmentation on Brain MR Slices Corrupted by RF-Inhomogeneity
2007
Brain MR Images corrupted by RF-Inhomogeneity exhibit brightness variations in such a way that a standard Fuzzy C-Means (fcm) segmentation algorithm fails. As a consequence, modified versions of the algorithm can be found in literature, which take into account the artifact. In this work we show that the application of a suitable pre-processing algorithm, already presented by the authors, followed by a standard fcm segmentation achieves good results also. The experimental results ones are compared with those obtained using SPM5, which can be considered the state of the art algorithm oriented to brain segmentation and bias removal.
Exudates as Landmarks Identified through FCM Clustering in Retinal Images
2020
The aim of this work was to develop a method for the automatic identification of exudates, using an unsupervised clustering approach. The ability to classify each pixel as belonging to an eventual exudate, as a warning of disease, allows for the tracking of a patient&rsquo
Automated prostate gland segmentation based on an unsupervised fuzzy C-means clustering technique using multispectral T1w and T2w MR imaging
2017
Prostate imaging analysis is difficult in diagnosis, therapy, and staging of prostate cancer. In clinical practice, Magnetic Resonance Imaging (MRI) is increasingly used thanks to its morphologic and functional capabilities. However, manual detection and delineation of prostate gland on multispectral MRI data is currently a time-expensive and operator-dependent procedure. Efficient computer-assisted segmentation approaches are not yet able to address these issues, but rather have the potential to do so. In this paper, a novel automatic prostate MR image segmentation method based on the Fuzzy C-Means (FCM) clustering algorithm, which enables multispectral T1-weighted (T1w) and T2-weighted (T…
A Novel Technique for Fingerprint Classification based on Fuzzy C-Means and Naive Bayes Classifier
2014
Fingerprint classification is a key issue in automatic fingerprint identification systems. One of the main goals is to reduce the item search time within the fingerprint database without affecting the accuracy rate. In this paper, a novel technique, based on topological information, for efficient fingerprint classification is described. The proposed system is composed of two independent modules: the former module, based on Fuzzy C-Means, extracts the best set of training images, the latter module, based on Fuzzy C-Means and Naive Bayes classifier, assigns a class to each processed fingerprint using only directional image information. The proposed approach does not require any image enhancem…
Compaction of Open-Graded HMAs Evaluated by a Fuzzy Clustering Technique
2015
The aim of this paper is the proposal of an expeditious procedure to be used during the execution of an asphalt layer for improving the compaction task. This procedure, based on a fuzzy clustering technique, starts from the knowledge of some information recorded by ordinary measuring instruments and provides an aid to the decision-maker on the number of roller passes needed to achieve a specific density at a certain temperature. This result can be deduced with great rapidity during the paving operations on site without waiting for the time spent in the core extraction and in the subsequent laboratory analysis. In this way it is possible to identify more precisely which aspects of the execut…
A fully automatic 2D segmentation method for uterine fibroid in MRgFUS treatment evaluation
2015
PurposeMagnetic Resonance guided Focused UltraSound (MRgFUS) represents a non-invasive surgical approach that uses thermal ablation to treat uterine fibroids. After the MRgFUS treatment, an operator must manually segment the treated fibroid areas to evaluate the NonPerfused Volume (NPV). This manual approach is operator-dependent, introducing issues of result reproducibility, which could lead to errors in the subsequent follow-up phase. Moreover, manual segmentation is time-consuming, and can have a negative impact on the optimization of both machine-time and operator-time. MethodTo address these issues, in this paper a novel fully automatic method based on the unsupervised Fuzzy C-Means cl…
Automatic skull stripping in MRI based on morphological filters and fuzzy c-means segmentation
2012
In this paper a new automatic skull stripping method for T1-weighted MR image of human brain is presented. Skull stripping is a process that allows to separate the brain from the rest of tissues. The proposed method is based on a 2D brain extraction making use of fuzzy c-means segmentation and morphological operators applied on transversal slices. The approach is extended to the 3D case, taking into account the result obtained from the preceding slice to solve the organ splitting problem. The proposed approach is compared with BET (Brain Extraction Tool) implemented in MRIcro software.